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Dynamical and stationary properties of on-line learning from finite training sets

Peixun Luo* and K. Y. Michael Wong†

Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
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The dynamical and stationary properties of on-line learning from finite training sets are analyzed by using
the cavity method. For large input dimensions, we derive equations for the macroscopic parameters, namely,
the student-teacher correlation, the student-student autocorrelation and the learning force fluctuation. This
enables us to provide analytical solutions to Adaline learning as a benchmark. Theoretical predictions of
training errors in transient and stationary states are obtained by a Monte Carlo sampling procedure. Generali-
zation and training errors are found to agree with simulations. The physical origin of the critical learning rate
is presented. Comparison with batch learning is discussed throughout the paper.
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I. INTRODUCTION

In recent years, there have been many attempts to ana
the dynamics of learning from examples in classification a
regression@1#. From a general perspective, this dynamics
typical of many other nonequilibrium complex many-bo
systems, in which individual components collectively co
tribute to the achievement of global objectives. Interest
examples can be drawn from the modeling of social beha
@2#, economics and ecology@3#, patterns of routing in road
traffic @4#, and telecommunications networks@5#.

The dynamics of learning from examples in classificat
and regression refers to the dynamical process of minimiz
the risk functions of the classifier or regressor, often via g
dient descent, until a steady state is reached. Despite
progress in understanding thesteady-statebehavior of learn-
ing processes@6#, the dynamicsof learning was much les
understood. This is probably due to the high complexity
its analysis, since it typically involves the evolution of ma
microscopic parameters, each strongly interacting with o
ers in a convolutional way. Yet, a number of important issu
in improving the learning efficiency depend on a better u
derstanding of its dynamics, including the speed of conv
gence, the early stopping point for optimal generalizati
the shortening of the plateau regime, and the avoidanc
getting trapped in local minima@7–9#. Hence, it would be
both useful and challenging to analyze the dynamics
learning.

On-line learning is a common mode of implementin
learning, in which an independent example is presente
each learning step. Significant progress has been made i
case of on-line learning ofinfinite training sets@7,10,11#.
Since statistical correlations among the examples can be
nored, the dynamics can be described by instantaneous
namical variables, leading to great advances in our un
standing of on-line learning. However, in reality, the sam
restricted set of examples is recycled during the learning p
cess. This introduces temporal correlations of the weight
the learning history, rendering the analysis at best as an
proximation to the reality.
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There were some attempts to understand on-line learn
with recycledexamples. Early researchers used the appro
mate Fokker-Planck equation to describe the learning p
cess@12,13#. The use of perturbative expansions of the m
ter equation was shown to be insufficient for a prec
calculation of global properties of on-line learning@14#. The
difference between batch learning and on-line learning w
investigated to the first order of the learning rate@15#. For
general learning rates, the exact solution for the Hebbian
was derived in Ref.@16#. Exact solutions were found fo
linear networks, and the generalization ability of on-lin
learning was found to outperform batch learning if a bias
present in the input@17#. The dynamics of on-line learning in
multilayer neural networks was analyzed by using the
namical replica method and solutions were found in the lim
of large sizes of training sets@18#.

A recent work based on the generating functional a
proach is a good step forward towards a general theory
describing the dynamical and stationary properties of on-
learning @19#. It illustrates the mean-field character of th
dynamics in its description in terms of an effective sing
example. For random choices of the sequence of prese
examples, the dynamics is characterized by the appear
of an example as a Poisson event in the learning seque
Steady-state properties were discussed by neglecting fluc
tions in the learning forces~referred to as the mean-forc
approximation hereafter!.

In this paper, we propose an analysis of on-line learn
with recycled examples using the cavity method. The cav
method is a mean-field analysis first used in magnetic s
tems @20#. It enables us to understand the properties o
system by focusing on the response of the system to a si
element added to it. It was later generalized to study learn
in neural networks with the advantages of a clear phys
picture and microscopic insights to both their equilibriu
and dynamical properties@8,9,21#. The cavity method was
subsequently applied to analyze the dynamics ofbatchlearn-
ing, in which the entire set of examples is provided for ea
learning step@8#. It provides dynamical equations and o
tains important results on the overtraining, early stoppi
noise effects, and average learning strategy.

To adapt the cavity method from batch learning to on-li
learning in this paper, there is a need to account for
©2003 The American Physical Society06-1
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following subtleties.~a! Averaging over the choice of se
quencing the examples is now necessary.~b! The measure-
ments of an example observed at an instant is now correl
with the instants when it was learned. This is due to the g
boost of that example at a learning step, which upsets
uniformity of the examples as in the case of batch learni

We remark that the subtleties of sequence-dependen
namics are common in many other complex dynamical s
tems. In the modeling of economics, for instance, differ
sequences of the market state appearing in the minority g
may lead to different evolutions of the system@22#. System
responses to a market state should also be correlated wit
instants when the state appeared in the market history. S
lar correlations should also exist in other ecological and t
fic models. Hence, we hope that the present study of on-
learning can provide insights to other dynamical problem

The purposes of this paper are:~a! to perform an exact
analysis of the learning dynamics as far as the formula
allows, so that minimal approximations are made, and dee
physical insights can be extracted;~b! to illustrate the ana-
lytical approach using the simple example of a linear lea
ing rule, which can act as a benchmark for verifying t
validity of the theory, and a theoretical framework for mo
complicated systems, such as nonlinear learning rules
multilayer networks;~c! to explore efficient Monte Carlo
procedures implied by the distribution of example activatio
predicted by the theory, which can be applied to the m
complicated cases;~d! to study the difference between on
line learning and batch learning for general learning con
tions.

The paper is organized as follows. In Sec. II, we descr
the dynamics of on-line learning. In Sec. III, we introdu
the cavity method and derive the dynamical equations for
macroscopic measurements:~a! G(t,s) and D(t,s), the
Green’s functions of weights and examples in response
stimuli; ~b! R(t), the correlation between the teacher a
student weight vectors, andC(t,s), the autocorrelation be
tween student weight vectors at different times;~c! the fluc-
tuation of the learning forcêF2(t)&. The Monte Carlo pro-
cedure to calculate the training error is also presented
Sec. IV, we compare theoretical predictions with simulat
results. The average learning strategy in the long time lim
proposed and compared with the performance of batch le
ing. In Sec. V, we summarize our work and propose so
future directions. In the Appendixes, we describe the ma
ematical details of the procedure of sequence averaging

II. FORMULATION

We consider a training set ofp examples generated by
teacher network withN weightsBj , j 51, . . . ,N. For defi-
niteness, we setuBu51. Each examplem51, . . . ,p consists
of anN dimensional input vectorjm, and a teacher generate
output ỹm . It is convenient to introduce the parametera
[p/N. The inputsj j

m are Gaussian variables with zero me
and unit variance. The outputs are

ỹm5H sgn~ym1«zm! for classification

ym1«zm for regression,
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whereym[B•jm is the teacher activation,zm is a Gaussian
variable with zero mean and unit variance, and« is the noise
amplitude.

The examples are learned by a student network with
same number of inputs and output. At each learning stet,
one example in the training set is randomly drawn, and
sequence of example labels is denoted ass(t). If the ex-
ample drawn out at timet is s(t) then the weights are modi
fied according to

Jj S t1
1

ND5Jj~ t !1
v
N

$F„xs(t)~ t !,ỹs(t)…j j
s(t)2lJj~ t !%

1
1

N
h j~ t !, ~1!

wherexs(t)(t)[J(t)•js(t) is the student activation.v is the
learning rate andl is the weight decay~the factorv is ex-
cluded to facilitate comparisons with the steady-state
sults!. The forceF(x,ỹ) describes the learning rule,

F~x,ỹ!5H ỹ for Hebbian rule

ỹ2x for Adaline rule

ỹ~k2xỹ!Q~k2xỹ! for Adatron rule,

~2!

where Q is the step function andk is a parameter often
referred to as the stability. The last term in Eq.~1! is the
dynamical noise term, often added to avoid the learning p
cedure being trapped in local minimum, with^h j (t)hk(s)&
52Td ts /N andT is the dynamical noise level.

In the limit of vanishing learning ratev, the on-line dy-
namics described by Eq.~1! is equivalent to the batch learn
ing formulation in Ref.@8# when the time scale, weight de
cay and the dynamical noise in the latter are multiplied
factors ofa/v, 1/a, andv2/a2, respectively. However, for
finite learning ratev, the randomness of the learning s
quence adds noise to the dynamics.

III. THE CAVITY METHOD

A. The cavity activation and the Green’s functions

Consider a new example 0 that is not included in t
original training set. We define its activation at timet in the
network trained without that example as itscavity activation
h0(t), i. e.,h0(t)[J(t)•j0. It is a random variable since th
network has not learned the information of this new e
ample. When the size of the networkN is very large,h0(t) is
a Gaussian variable with meanR(t)y0 and covariance
C(t,s)2R(t)R(s), where R(t)[B•J(t) is the student-
teacher correlation at timet, and C(t,s)[J(t)•J(s) is the
student-student autocorrelation at timest and s. Both R(t)
andC(t,s) are self-averaging in the limit of largeN.

Now we consider the evolution of another networkJj
0(t),

in which the example 0 is added to its training set. To ens
that the probability of occurrence of the new example 0 a
the old ones remain identical, the new example seque
s0(t) is obtained from the original example sequences(t)
according to
6-2
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s0~ t !5H s~ t ! probability512
1

11p

0 probability5
1

p11
.

~3!

In the new example sequences0(t), at each learning step
the weight is modified according to

Jj
0S t1

1

ND5Jj
0~ t !1

v
N

$F„xs0(t)
0

~ t !,ỹs0(t)…j j
s0(t)2lJj

0~ t !%

1
1

N
h j~ t !, ~4!

wherexs0(t)
0 (t)[J0(t)•js0(t). Comparing the networksJj

0(t)
andJj (t), we obtain from Eqs.~1! and ~4!,

S Ŝ211
vl

N D @Jj
0~ t !2Jj~ t !#5

v
N

$F„xs0(t)
0

~ t !,ỹs0(t)~ t !…j j
s0(t)

2F~xs(t)~ t !,ỹs(t)~ t !!j j
s(t)%,

~5!

where Ŝ is the time shift operator. LetG(0)(t2t8) be the
bare Green’s function,

G(0)~ t2t8!5QS t12t82
1

ND S 12
vl

N D N(t2t82
1
N)

. ~6!

It satisfies

S Ŝ211
vl

N DG(0)~ t2t8!5d tt8 . ~7!

We assume that the adjustment fromJj (t) to Jj
0(t) is small

so that linear response theory is applicable. Then on sep
ing the contributions from the new example and the old on
we have

Jj
0~ t !2Jj~ t !5

v
N (

t8,t

G(0)~ t2t8!ds0(t8)0

3@F0~ t8!j j
02Fs(t8)~ t8!j j

s(t8)#

1
v
N (

k,t8,t

G(0)~ t2t8!ds0(t8)s(t8)j j
s(t8)

3Fs(t8)
8 ~ t8!jk

s(t8)@Jk
0~ t8!2Jk~ t8!#, ~8!

whereFs(t)(t) is the shorthand notation of the force due
examples(t) at time t, andF8 represents the derivative o
the force with respect to the activationx. We can now inter-
pret this result from the viewpoint of the linear respon
theory. The first term on the right hand side describes
primary effects of adding example 0 to the training set an
the driving term for the difference between the two networ
This occurs at the discrete instants withs0(t8)50 by adding
the force due to example 0 and removing that due to
original examples(t8). The second term describes th
many-body reactions due to the change of the original
01190
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amples caused by the added example, and is referred t
the Onsager reaction term. Describing the response to
driving term by the Green’s function, Eq.~8! reduces to

Jj
0~ t !2Jj~ t !5

v
N (

k,t8,t

Gjk~ t,t8!ds0(t8)0

3@F0~ t8!jk
02Fs(t8)~ t8!jk

s(t8)#, ~9!

whereGjk(t,s) is the time-dependent Green’s function wi
the iterative expression

Gjk~ t,s!5d jkG(0)~ t2s!1
v
N (

t8,t
(

l
G(0)~ t2t8!ds0(t8)s(t8)

3j j
s(t8)Fs(t8)

8 ~ t8!j l
s(t8)Glk~ t8,s!. ~10!

The Green’s functionGjk(t,s) is the response of the weigh
Jj at timet due to a unit stimulus introduced at times to the
right hand side of Eq.~1! corresponding to weightJk , in the
limit of vanishing magnitude of the stimulus.

In the limit of large N, we can apply a diagrammati
analysis similar to the case of batch learning@8#. In contrast
with batch learning, we need to first average Eqs.~9! and
~10! over the distribution of example sequence using Eq.~3!.
This can then be followed by the usual averaging over
distribution of background examples, as in the case of ba
learning. The result is that we can neglect the effect of
moving the background example represented by the sec
term in the square bracket of the right hand side of Eq.~9!.
Gjk(t,s) is self-averaging and diagonal in the largeN limit,
so thatGjk(t,s)5G(t,s)d jk , whereG(t,s) satisfies the Dys-
on’s equations,

G~ t,s!5G(0)~ t2s!1vE dt1E dt2G(0)~ t2t1!

3^Ds(t2)~ t1 ,t2!Fs(t2)8 ~ t2!&G~ t2 ,s!, ~11!

Ds(s)~ t,s!5d~ t2s!1
v
aE dt1G~ t,t1!Fs(s)8 ~ t1!Ds(s)~ t1 ,s!,

~12!

where G(0)(t2s)[Q(t2s)exp@2vl(t2s)# is the bare
Green’s function.Ds(s)(t,s) is the example Green’s Func
tion, and ^•& represents average over distributions of bo
example sequences and examples.

We emphasize that the average^Ds(t2)(t1 ,t2)Fs(t2)8 (t2)&
is different from the averagêDm(t1 ,t2)Fm8 (t2)&. The former
specifies that the functionF8(t2) andD(t1 ,t2) are due to the
example that was picked from the example sequence
learning at the particular instantt2. During on-line learning,
the activation of this example receives a giant boost at
learning instant, as mentioned later in the text discussion
Fig. 1. This makes its distribution different from that of
randomly drawn examplem, whose previous learning instan
remains unspecified. Hence, the former average will be
ferred to as anactiveaverage, in contrast to the latter, whic
is referred to as apassiveaverage.

Nevertheless, in the case of linear rules used for illus
tion later in this paper,F8(t) is a constant independent oft.
6-3
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Hence, the active average in Eq.~11! becomes identical to
the passive average. Thus, the Dyson’s equations~11! and
~12! becomes identical to those of batch learning@8#, after
rescaling the time and the weight decay.

In the case of Hebbian rule,F8(x)50 and Dm(t,s)
5d(t2s). The Green’s function becomes identical to t
bare Green’s function.

In the case of the Adaline rule,F8(x)521 andDm(t,s)
5D(t,s) independent of examplem. The weight Green’s
function becomes invariant under translation of time, and
be written as

G~ t,s!5G~ t2s,0!5E r~x!e2x(t2s)dx, ~13!

wherer(x) is the density of state

r~x!5~12a!Q~12a!d~x2vl!1
A~xmax2x!~x2xmin!

2p
v
a

~x2vl!

,

~14!

FIG. 1. The evolution of the activations of a randomly selec
example in a network withN51000,a50.3,k50.8,v50.1, andl
50.1 using the Adatron rule. See text discussions for the expla
tions of the lines and symbols.
01190
n

with xmax and xmin as the edges of the spectrum given
xmax,xmin5vl1v(161/Aa)2, respectively.

The number of timesm that the new example 0 appears
time t follows a Poisson distribution with meant/a. If these
appearances occur at timest1 , . . . ,tm (tm, . . . ,t1,t),
Eq. ~9! reduces to

Jj
0~ t !5Jj~ t !1

v
N (

r 51

m

G~ t,t r !F0~ t r !j j
0 . ~15!

Multiplying both sides byj j
0 and summing overj, one de-

rives the relationship between the cavity activation and
generic activation of example 0,

x0~ t !5h0~ t !1v(
r 51

m

G~ t,t r !F0~ t r !. ~16!

This relation enables us to express the cavity activationh(t)
of any example as a function of its generic activati
x(t1), . . . ,x(tm),x(t) at the previous and current learnin
instants, and attributes physical meaning to the single ef
tive example in Ref.@19#. Hereafter, we omit the exampl
label if no confusion occurs.

The simulation results in Fig. 1 verify the relationsh
between the cavity activation and the generic activation fo
randomly selected example. Up tot53, the example is
drawn from the learning sequences(t) nine times, close to
the Poisson average oft/a510. The solid line describes th
evolution of x(t), which exhibits giant boosts at the nin
learning instants indicated by the vertical dashed lines. T
dotted line describes the evolution of the cavity activati
h(t), which is obtained in a second network that uses
same learning sequences(t), except that learning is pause
when the example is drawn. Since the example and this
work are uncorrelated,h(t) evolves as a random walker wit
appropriate means and covariances. The filled circles in
cate the values of the cavity activations predicted by E
~16!, using the Green’s functions measured by compar
learning with and without stimuli@23#. They show remark-
able agreement with the simulatedh(t).

To derive the distribution of generic activations, we fir
consider the distribution of cavity activations, which is give
in the Gaussian form atm learning steps and timet0(5t) by

d

a-
f

.
eric
P„h~ t0!, . . . ,h~ tm!uy…5

expH 2
1

2 (
i , j 50

m

@h~ t i !2R~ t i !y#~C2RRT! i j
21@h~ t j !2R~ t j !y#J

A~2p!m11det~C2RRT!
, ~17!

whereC2RRT is a square matrix with sizem11 and (C2RRT) i j 5C(t i ,t j )2R(t i)R(t j ). The corresponding distribution o
generic activations can be written as

P„x~ t0!, . . . ,x~ tm!uy,ỹ…5P„h~ t0!, . . . ,h~ tm!uy…U]@h~ t0!, . . . ,h~ tm!#

]@x~ t0!,•••,x~ tm!#
U, ~18!

whereh(t i) is a function ofx(t i), . . . ,x(tm) defined by Eq.~16!, and the dependence onỹ may arise from the learning forces
Since ]h(t i)/]x(t j )50 for t j.t i , and ]h(t i)/]x(t i)51, the Jacobian reduces to 1. Therefore, the distribution of gen
activations can be expressed as
6-4
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P~x~ t0!, . . . ,x~ tm!uy,ỹ!5

expH 2
1

2 (
i , j 50

m

@h~ t i !2R~ t i !y#~C2RRT! i j
21@h~ t j !2R~ t j !y#J

A~2p!m11det~C2RRT!
, ~19!

where h(t i) are given by Eq.~16!. In general,h(t i) can be a nonlinear function ofx(t i), . . . ,x(tm). Hence, the generic
activation distribution in Eq.~19! is no longer Gaussian, although the cavity activation distribution in Eq.~17! is. This
characteristic of on-line learning is demonstrated in numerical simulations for the Adatron rule in Ref.@27#.

We now illustrate how the above result can be applied to specific cases. For the Hebbian rule, Eq.~16! implies thath(t) is
not an explicit function ofx(t r) at the previous learning instantst r ,

h~ t !5x~ t !2 ỹ(
r 51

m

exp@2vl~ t2t r !#. ~20!

This enables us to write down the instantaneous activation distribution, given the learning instantst1 , . . . ,tm of the example,

P~x,t0uy,ỹ;t1 , . . . ,tm!5

expH 2
1

2
@C~ t,t !2R2~ t !#21Fx~ t j !2 ỹ(

r 51

m

e2vl(t2tr )2R~ t !yG2J
A2p@C~ t,t !2R2~ t !#

. ~21!
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The distribution is then averaged over the time distribut
and the Poisson distribution of learning instants

P~x,tuy,ỹ!5^P~x,tuy,ỹ;t1 , . . . ,tm!&s , ~22!

where^•&s represents averaging over the distribution of
quences. The sequence average of an instantaneous qu
c at time t depending on the previous learning instan
t1 , . . . ,tm is

^c~ tut1 , . . . ,tm!&s5 (
m50

`
e2t/a

am E
0

t

dt1 . . .

3E
0

tm21
dtmc~ tut1 , . . . ,tm!, ~23!

where the factor ofm! in the Poisson distribution is cancele
by the number of permutations in orderingt1 , . . . ,tm . Using
the Hubbard-Stratonovich identity, we can factorize the in
grals overt r(1<r<m). We arrive at the result

P~x,tuy,ỹ!5E dx̂

2p
expH i x̂@x2R~ t !y#

2
1

2
@C~ t,t !2R2~ t !# x̂2

1
1

aE0

t

ds@exp~2 i x̂ ỹe2vl(t2s)!21#J ,

~24!

which agrees with the rule-specific derivation in Ref.@16#.
01190
n

-
tity

-

For the Adaline rule, substitutingF(x,ỹ)5 ỹ2x into Eq.
~16! yields a linear relation between the student activat
and the cavity ones,

x~ t0!5(
r 50

m

~11vG!0r
21Fh~ t r !1v (

s5r 11

m

GrsỹG , ~25!

whereG is a square matrix with sizem11 andGrs5G(t r
2ts,0) for t r.ts andGrs50 for t r<ts . Inserting the mean
and variance of the cavity activation, we see thatx(t0) is a
Gaussian variable with mean and variance

^x~ t0!&5(
r 50

m

~11vG!0r
21FR~ t r !y1v (

s5r 11

m

GrsỹG ,

D2~ t0!5 (
r ,s50

m

~11vG!0r
21~11vG!0s

21@C~ t r ,ts!

2R~ t r !R~ ts!#. ~26!

To obtain the activation distribution in such an application
the average training error, we need to further average
Gaussian distribution in Eq.~26! over the learning se-
quences.

In general, for nonlinear learning rules, the linear inve
sion of Eq.~16! to obtain the student activation is not po
sible, and the activation distribution becomes non-Gauss
even for a given sequence of learning instants. Neverthe
a useful identity exists for the sequence average pertainin
an example, as derived in Appendix A,

^x~ t !&s5h~ t !1
v
aE0

t

dt8G~ t,t8!^F~ t8!&s . ~27!
6-5
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This equation of the sequence-averaged activation is
same as that of the self-consistent equation of the activa
in batch learning, after rescaling the time and weight dec
@8#.

B. The student-teacher correlation

To analyze the student-teacher correlation, we multi
both sides of Eq.~1! by Bj and sum overj, yielding in the
limit of large N,

S d

dt
1vl DR~ t !5v^^ymFm~ t !&s&m , ~28!

where^•&m represents averaging over the distribution of e
amples.

For the Adaline rule, the solution ofR(t) in Eq. ~28!
involves^xm(t)&s . By virtue of Eq.~27!, and exploiting the
example Green’s function in Eq.~12!, we obtain

^xm~ t !&s5E
0

t

dt1D~ t2t1!

3Fhm~ t1!1
v
aE0

t1
dt2G~ t12t2!ỹmG . ~29!

Applying Laplace transform to Eq.~29! and then Eq.~28!,

^x̃m~z!&s5D̃~z!F h̃m~z!1
v ỹm

az
G̃~z!G ,

~z1vl!R̃~z!5vH a

z
2D̃~z!F R̃~z!1

va

az
G̃~z!G J , ~30!

where

a[^ymỹm&m5HA 2

p~11«2!
for classification,

A11«2 for regression.

Here G̃(z)[*0
`dte2ztG(t,0) and D̃(z)[*0

`dte2ztD(t,0).
Inverse Laplace transform yields

R~ t !5aE dxr~x!~x2vl!
12e2xt

x
, ~31!

which is the same as that in batch learning after rescalin

C. The student-student autocorrelation and the force
fluctuation

To analyze the student-student autocorrelation, we mu
ply both sides of Eq.~1! by Jj (s) and sum overj, thus
obtaining in the limit of largeN,

S d

dt
1vl DC~ t,s!5v^^xm~s!Fm~ t !&sus(t)5m&m . ~32!
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We remark that̂ xm(s)Fm(t)&sus(t)5m , is an active average
which is distinct from thepassive averagêxm(s)Fm(t)&s ,
where the example learned at timet is not necessarilym.

For the Adaline learning rule, Appendix B shows that t
average difference Wm(s,t)[^xm(s)Fm(t)&sus(t)5m
2^xm(s)Fm(t)&s can be expressed in terms of Green’s fun
tions and learning force,

Wm~s,t !5vE
t

s

dt8D~s,t8!G~ t8,t !^Fm
2 ~ t !&s . ~33!

A similar equation for the passive average is also derived
Appendix B,

^xm~s!Fm~ t !&s5E
0

s

dt1D~s,t1!Fhm~ t1!^Fm~ t !&s

1
v
aE0

t1
dt2G~ t1 ,t2!ỹm^Fm~ t !&sG

2
v2

a E
0

min(t,s)

dt1E
t1

s

dt2E
t1

t

dt3D~s,t2!

3G~ t2 ,t1!D~ t,t3!G~ t3 ,t1!^Fm
2 ~ t1!&s .

~34!

Therefore, one can perform the Laplace transforms

C̃~w,z![E
0

`

dsE
0

`

dte2ws2ztC~s,t !,

^^F̃m~w!F̃m~z!&s&m

[E
0

`

dsE
0

`

dte2ws2zt^^Fm~s!Fm~ t !&s&m .

After substituting Eqs.~33! and ~34! into Eq. ~32!, and per-
forming elaborate algebra, one obtains an equation of
weight correlation

C̃~w,z!5v
D̃~w!2D̃~z!

w2z H b

wz
1

aa2@D̃~w!1D̃~z!21#

wz

1a^^F̃m
2 ~w1z!&s&m1

2aT

v2~w1z!D̃~w!D̃~z!
J ,

~35!

and an equation of the force autocorrelation

^^F̃m~w!F̃m~z!&s&m

5D̃~w!D̃~z!H 1

wz
1

aa2

wz
@D̃~w!1D̃~z!22#

1C̃~w,z!1
v2

a
G̃~w!G̃~z!^^F̃m

2 ~w1z!&s&mJ . ~36!

Here,
6-6
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b[^ ỹm
2 &m5H 1 for classification

11«2 for regression.

We note the presence of the force fluctuation te

^^F̃2(w1z)&s&m in Eqs.~35! and~36!. This term is absent in
the corresponding equations in the case of batch learn
This can be seen by observing the scalingsz21;G̃(z)
;^^F̃m

2 (w1z)&s&m;v21 in Eqs. ~35! and ~36!, so that the

coupling of weight correlationC̃(w,z) and force autocorre
lation ^^F̃m(w)F̃m(z)&s&m via the force fluctuation̂ ^F̃m

2 (w
1z)&s&m will approach zero whenv is vanishingly small,
which indicates that this temporal correlation is unique
on-line learning. In contrast to batch learning, the prese
of the force fluctuation term increases the weight correlat
via Eq. ~35!, which in turn increases the force fluctuatio
itself via Eq. ~36!. As we shall see, this coupling leads to
collective relaxation mode.

Performing the inverse Laplace transform, one can ob
the autocorrelation

C~s,t !5E dxr~x!~x2vl!Fbv
a

1a2S x2vl2
v
a D G

3S 12e2xs

x D S 12e2xt

x D
1vE dxr~x!~x2vl!E

0

min(t,s)

dt8e2x(t1s22t8)

3^F2~ t8!&1TE dxr~x!
e2xut2su2e2x(t1s)

x
,

~37!

where^F2(t)&[^^Fm
2 (t)&s&m . In Eq. ~37!, the first and third

terms are similar to those in the autocorrelation function
batch learning. The second term represents the contribu
induced by the force fluctuations arising from on-line lea
th

01190
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ing. It vanishes whenv→0. However, for finite learning rate
v, one can see that this term plays a similar role as
dynamic noise. This can be seen by considering
asymptotic limit of the second term, where^F2(t8)& ap-
proaches the steady-state value of^F2&, yielding

v
2

^F2&E dxr~x!~x2vl!
e2xut2su2e2x(t1s)

x
. ~38!

Comparing with the dynamical noise in the third term, w
see that̂ F2& is a measure of an effective temperature, a
the two noise contributions differ slightly in their spectru
of relaxation rates. Therefore, in practice, force fluctuatio
can also assist the learning dynamics to avoid being trap
in metastable states, playing the same role as dynam
noises to batch learning. Hereafter, we letT50 in our final
results.

To obtain the force autocorrelation̂̂ Fm(s)Fm(t)&s&m ,
we substitute Eq.~35! into Eq. ~36! and perform the inverse
Laplace transform, which yields,

^^Fm~ t !Fm~s!&s&m5b1
1

vE dxr~x!Fbv
a

1a2S x2vl2
v
a D G

3F ~x2vl!2S 12e2xt

x D3S 12e2xs

x D
2~x2vl!S 12e2xt

x D2~x2vl!

3S 12e2xs

x D G1E
0

min(t,s)

dt8^F2~ t8!&

3E dxr~x!~x2vl!2e2x(t1s22t8).

~39!

Equatingt ands, the force fluctuation is given by the invers
Laplace transform of
^^F̃m
2 ~z!&s&m5

b

z
1

1

vE dxr~x!
x2vl

x2 Fbv
a

1a2S x2vl2
v
a D GFx2vl

z12x
1

2vl

z1x
2

x1vl

z G
12E dxr~x!

~x2vl!2

z12x

. ~40!
ion

s
de
e

The final expression consists of four contributions. First,
pole atz50 gives the steady-state value of

^F2&5

b2
1

vE dxr~x!S 12
v2l2

x2 D Fbv
a

1a2S x2vl2
v
a D G

12E dxr~x!
~x2vl!2

2x

.

~41!
eThe second and third contributions come from the relaxat
spectrum of force fluctuations ranging through (xmin , xmax)
and (2xmin,2xmax), respectively. The fourth contribution i
described by the existence of a collective relaxation mo
arising from the force-weight coupling, which is a uniqu
phenomenon of on-line learning. Its relaxation ratels is
given by the pole

12E dxr~x!
~x2vl!2

2x2ls
50. ~42!
6-7
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This is called slow mode in Ref.@17#. Whenls approaches
zero, the steady-state force fluctuation and student we
will diverge. The critical learning rate at which the weig
diverges in given by

vc5
4

22l@11a1al2A~11a1al!224a#
, ~43!

which is also derived through the spectral analysis@17#.

D. The training and generalization errors

The performance of learning is measured by the train
and generalization errors. Here, we provide their express
for noiseless examples. Expressions for other cases ca
derived similarly. In classification, the generalization error
defined as the probability that anew example presented t
the network is misclassified,Eg(t)5^Q@2(B•j)(J(t)
•j)#&j . It is determined by the magnitude of the stude
vectorC(t,t) and its correlation with the teacher vectorR(t)
@8#, that is,

Eg~ t !5
1

p
cos21

R~ t !

AC~ t,t !
. ~44!

Analytical expressions ofR(t) andC(t,t) are derived in pre-
ceding sections for the Adaline rule.

The training error is defined as the fraction of examples
the training set that are classified wrongly, i.e.,
nt

ng
on

en

ti

01190
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Et~ t !5E dyE dỹP~y,ỹ! (
m50

`
e2t/a

am E
0

t

dt1 . . . E
0

tm21

dtm

3E dx~ t !P~x~ t !uy,ỹ;t1 , . . . ,tm!Q@2 ỹx~ t !#. ~45!

This can be computed by a Monte Carlo sampling proced
which has been shown to be free from finite size effects@24#.
For general learning rules, we adopt the procedure with
following steps:

~1! For a given training example, generate the teac
activationy and ỹ according toP(y,ỹ).

~2! For time t0(5t), generate the number of timesm the
example appears in a training sequence from time 0 tot0
according to a Poisson distribution with meant0 /a.

~3! Generate the instantst1 , . . . ,tm that the example ap
pears in the training sequence according to a uniform dis
bution between 0 andt0, with 0,tm, . . . ,t1,t0.

~4! Generate the cavity activationsh(t r), r 50, . . . ,m ac-
cording to the Gaussian distribution with meanR(t r)y and
covarianceC(t r ,ts)2R(t r)R(ts). This can be carried out by
generating the independent Gaussian variableszik (k
50, . . . ,m) with mean 0 and variance 1, and transformi
them toh(t i) via

h~ t i !5R~ t !y1(
k5 i

m

Aikzk , 0< i<m ~46!

and the matrix elementsAik are obtained from the recursio
relations

Amm5AC~ tm ,tm!2R2~ tm! ~47!

and for 1< j , i<m,
Am2 i ,m2 j5

C~ tm2 i ,tm2 j !2R~ tm2 i !R~ tm2 j !2 (
k51

j 21

Am2 i ,m2kAm2 j ,m2k

Am2 j ,m2 j
,

Am2 i ,m2 i5FC~ tm2 i ,m2 i !2R2~ tm2 i !2 (
k51

i 21

Am2 i ,m2k
2 G1/2

. ~48!
rn-
by a

re,
he
na-

tain
he
en-
~5! Computex(t i) according to Eq.~16!. This enables us
to collect samples for the distributionP(x(t0)uy,ỹ), and
hence estimate the training error.

~6! Steps~1! to ~5! are repeated to yield sufficient amou
of statistics.

For the Adaline learning, step~5! of the Monte Carlo
sampling procedure can be further simplified by exploiti
the Gaussian nature of the generic activation distributi
Using Eq.~26! to find the mean̂x(t0)& and variances2(t0),
the contribution of an example to the training error is giv
by erfc@^x(t0)& ỹ/A2s(t0)# .

The above procedure assumes that the Green’s func
G(t,s) and the correlationsR(t) and C(t,s) are knowna
.

on

priori . For general learning rules,G(t,s) can be obtained by
solving the Dyson’s equations Eqs.~11! and ~12!. Since the
equation involves an average over the distribution of lea
ing sequence and examples, it can again be obtained
Monte Carlo sampling procedure. Similarly,R(t) andC(t,s)
can be obtained by solving Eqs.~28! and ~32! by Monte
Carlo sampling. These will be left for further studies. He
for the exposition of the cavity method, we focus on t
Adaline learning, where these functions can be obtained a
lytically as described in the preceding sections.

For the purpose of consistency check, one can also ob
these functions directly from simulations and plug into t
Monte Carlo sampling procedure to check whether the g
6-8
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erated activation distribution agrees with simulations.
The proposed Monte Carlo procedure is similar to

effective single pattern process in Ref.@19#. The difference
lies in the generation of the learning instants of an exam
according to the Poisson distribution. In Ref.@19#, an indi-
vidual Poisson number with meanD/a is generated for every
time incrementD in the learning history. Here, the samplin
efficiency is improved by a single Poisson numberm with
mean t0 /a and m learning instants with uniform distribu
tions. For general learning rules, even if the Green’s fu
tions and correlation functions have to be generated from
Monte Carlo sampling procedure, it is possible to use si
larly efficient samplings. This will be left for further studie

While the Monte Carlo sampling procedure is useful
studying the transient behavior of learning, it can also
used to extract the stationary properties. At a very large
servation timet, we look back at the learning history of a
example by the network. Reasonably, only those learn
events occur recently have detectable contributions to
distribution of the student activationx(t) in Eq. ~26!. There-
fore, we can calculate this distribution to any desired pre
sion by adding the earlier learning events one by one, u
certain stopping criteria are satisfied. Since the time interv
between successive learning events obey an exponentia
tribution, we have

P~xuy,ỹ!5 lim
m→`

lim
t→`

)
r 51

m F E
0

`dsr

a
e2(sr /a)G

3PS x,tUy,ỹ;t2s1 , . . . ,t2(
r 51

m

sr D . ~49!

For the Adaline learning, the distributionP(x,tuy,ỹ;t
2s1 , . . . ,t2( r 51

m sr) is replaced by a Gaussian distributio
with mean and variance given in Eqs.~26!. We find that the
contribution of earlier events approaches zero very quic
asm increases. Thus, we only need to invert small matri
in evaluating the training error at a steady state.

IV. RESULTS AND DISCUSSIONS

Figure 2~a! shows the transient behavior of the three m
roscopic parameters, student-teacher correlation, studen
tocorrelation, and force fluctuation for typical learning p
rameters. The training error and generalization error
shown in Fig. 2~b!. The theoretical predictions have an e
cellent agreement with simulations.

Figure 3 shows the generalization and training errors
the steady state. The theoretical predictions agree well w
the simulation results. The learning dynamics diverges at
critical learning ratevc . It is also observed that stron
weight decays tend to restrain this divergence at large le
ing rates, pushingvc to higher values. On the other han
strong weight decays increase the generalization error w
v is small.

In Fig. 3, we also present the results obtained by
mean-force approximation adopted in Ref.@19#. As we have
shown above, in the steady state, the sequence noise d
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the random drawing of examples at each learning step
equivalent to the external dynamical noise in batching lea
ing. Thus, the dynamical variables will fluctuate around th
temporal average even without other external noises. A
result, the mean-force approximation is only valid when t
learning rate and the sequence noise is small. As show
Fig. 3, it has an increasing discrepancy with simulatio
when v becomes large. The critical learning ratevc52(1
1l) estimated by the mean-force approximation is larg
than the simulation result. This discrepancy can be attribu
to the omission of the force fluctuations therein.

An important question is whether on-line learning c
perform as well as batch learning@25,26#. We have proposed
an averaged strategy in the context of batch learning, pred
ing that dynamical noise can be averaged over to yield p
formances approaching noiseless learning@8#. Since se-
quence noise in on-line learning has similar effects
dynamical noise, we adopt the same strategy to improve
formance of on-line learning.

In average learning, we first wait for the system to se
to the steady state, and then monitor the student weight

FIG. 2. The evolution of~a! teacher-student correlationR(t),
student autocorrelationC(t,t), and force fluctuation̂ F2(t)&, ~b!
training errorEt and generalization errorEg for Adaline learning at
a51.2,v51.9, andl50.8. Solid lines: the cavity method, with
analytical results forR(t),C(t,t),^F2(t)&,Eg and Monte Carlo re-
sults for Et averaged over 500 000 samples. Symbols: simulati
averaged over 100 samples withN5500.
6-9
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FIG. 3. The dependence of~a! the training errorEt and ~b! generalization errorEg on the learning ratev for a50.5. Solid lines:
steady-state results of the cavity method forl50.4. Dashed lines: steady-state results of the cavity method forl50.8. Corresponding
symbols: simulations averaged over 100 samples withN51000 andt520. Dotted lines: the mean-force approximation forl50.8.
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tor for an extended period of time. We use the weight vec
averaged over the monitoring period t, J̄
5 lim

t→1`
1/t* t

t1tJ(t8)dt8, as the estimated student vecto

The average weight amplitude is given by

C̄~t!5 lim
t→`

1

tEt

t1t

dt8C~ t,t1t8!. ~50!

Using Eq.~37!, we obtain

C̄~t!5E dxr~x!
x2vl

x2 Fbv
a

1a2S x2vl2
v
a D G

1
v
2

^F2&E dxr~x!S x2vl

x D S e2xt211xt

x2t2/2
D ,

~51!

where^F2& is given by Eq.~41!. We note that whent be-
comes very large, the contribution due to force fluctuatio
vanishes, makingC̄(t) approach the result for batch lear
ing. Hence, theaverage learning strategyyields a generali-
zation performance as good as that of the batch mode,inde-
pendent of the learning rate, as long as it is below t
critical value for divergent learning. Figure 4 shows that the
generalization error of on-line learning is equal to that of
batch mode atv50, and gradually grows larger whenv
increases. When the monitoring timet increases, there is a
impressive reduction of the generalization error compa
with its instantaneous values. The longer the monitoring ti
t, the smaller generalization error. In the limit of very lon
monitoring time, the generalization ability becomes equa
that of the batch mode for all values ofv below vc , and
jumps discontinuously to divergence atvc .
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V. CONCLUSION

We have analyzed the dynamics of on-line learning w
restricted sets of examples, which are randomly recyc
Using the cavity approach, we can derive equations for
macroscopic parameters describing the learning dynam
They are solvable for linear rules such as the Adaline ru
yielding results which agree with simulations. We also sh
that the student in on-line mode can learn as well as tha
batch mode, after it is averaged over a monitoring period
the steady state.

Our work represents a step forward from two recent tre
ments@17,19#. Compared with Ref.@17#, we have found that
a functional relationship exists between the generic and c
ity activations, and made explicit the distribution of activ

FIG. 4. The steady-state generalization errorEg averaged over
different monitoring times ata52 andl50.2. Symbols: simula-
tions averaged over 10 samples with N51000,
t50(d), 2(j), 5(l), 10(m), and 20 (.). Corresponding
lines: theory.
6-10
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tions, which is a superposition of Gaussians for the Adal
rule and each weighted by a Poisson distribution. As a res
our framework can be used to analyze the training errorEt .
More importantly, it has the potential to be extended to a
lyze nonlinear and multilayer networks. Compared with R
@19#, we have based our analysis on a more physical pict
For example, we have made explicit the difference betw
the active and passive averages involving the activation o
example and its learning force at a previous instant. T
enables us to analyze correctly the network behavior at la
learning rates, where the mean-force approximation does
apply. The physical insights will be useful when analytic
approximation schemes are devised for more complex
works.

However, our analysis shows that it is difficult to obtain
concise description of the steady-state behavior of on-
learning. The mean-force approximation in Ref.@19# repre-
sents a bold attempt towards this goal, but it works for sm
learning rates only. Here, we derive the steady-state ac
tion distribution in Eq.~49!, but it depends on the previou
history of learning instants, and no instantaneous descrip
of the distribution is available. As a result, it seems tha
Monte Carlo sampling procedure is so far the best appro
to find the steady-state distribution.

We have achieved our objective of benchmarking the c
ity approach using the Adaline learning. The next step w
be to extend the method to more complicated situations s
as nonlinear and multilayer networks. We may devise e
cient Monte Carlo sampling procedures to solve numeric
the equations for the Green’s functions, the teacher-stu
correlations, and the student autocorrelations, making us
the Poisson distribution of the learning events for a sin
example, the Gaussian distribution of the cavity activatio
and their causal relations with the generic student act
tions.

The cavity analysis of linear networks is also the found
tion of approximate descriptions of the stationary behavio
nonlinear and multilayer networks. One may describe
steady state by fluctuations about an averaged state. The
tuations can be approximated by linear deviations which
be analyzed by the cavity approach analogous to the Ada
benchmark. The present work is moving along this directi

Recently, various approximation schemes have been
posed in different learning regimes of complicated netwo
@17,25,27#, yielding results with varying degree of succes
For example, the conditionally Gaussian approximation c
not capture the sharp peaks in the activation distribution
veloped at the late learning stage of nonlinear rules~e.g.,
Adatron learning!. On the other hand, from the perspectiv
of the cavity method, the nonlinear mapping from the Gau
ian cavity activations to the generic activations can lead
sharp peaks in a natural way@9#. It is hoped that the cavity
framework can provide useful insights to improved appro
mations in the future.

From a broader perspective, our work has developed c
cepts which will be useful in the dynamical studies of oth
on-line systems, say, in economics, ecology, and traffic m
els. We have demonstrated how sequence averages can
vide precise descriptions of the typical behavior of these s
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tems. Furthermore, we have illustrated the need
differentiate between active and passive averages when
analyze responses to system states appearing as sequen
on-line processes. Also, the cavity method provides a me
to compute the difference between the active and pas
averages. It also provides a Monte Carlo sampling proced
based on Poisson-generated events to study the dynam
One possible application of these concepts may be foun
the minority game, where the sequence of market states
termines the evolution of the market behavior, analogous
the way the sequence of training examples determine
network behavior in on-line learning@22#.
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APPENDIX A: SEQUENCE AVERAGE OF THE STUDENT
ACTIVATION

According to the Eqs.~23! and~16!, the sequence averag
of the student activation of an example is

^x~ t !&s5h~ t !

1v (
m51

`
e2t/a

am E
0

t

dtm•••E
0

t2
dt1(

r 51

m

G~ t,t r !F~ t r !.

~A1!

Reordering the summations and the integrations before
after t r ,

^x~ t !&s5h~ t !1v (
m51

`
e2t/a

am (
r 51

m E
0

t

dtrE
tr

t

dtr 21•••

3E
t2

t

dt1F E
0

tr
dtr 11•••E

0

tm21
dtmG~ t,t r !F~ t r !G ,

~A2!

where we have made implicit the dependence ofF(t r) on the
previous learning instantst r 11 , . . . ,tm . Since the integrand
in the square bracket does not depend on the value
t1 , . . . ,t r 21, the integration over these variables simp
gives the factor of (t2t r)

r 21/(r 21)!. We further note that

(
m51

`

(
r 51

m
e2t/a

am
•[

1

a (
m2r 50

`
e2tr /a

am2r (
r 2150

`
e2(t2tr ) /a

a r 21

~A3!

and then derive
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^x~ t !&s5h~ t !1
v
aE0

t

dtrG~ t,t r !

3F (
m2r 50

`
e2tr /a

am2r E0

tr
dtr 11•••E

0

tm21
dtmF~ t r !G .

~A4!

From Eq.~23!, the summation in the square bracket is ju
the sequence average of the activation at timet r , yielding
Eq. ~27!.

APPENDIX B: SEQUENCE AVERAGE OF ACTIVE AND
PASSIVE CORRELATIONS

From Eqs.~16! and ~23!, the active sequence average
time s of the activation of examplem that is learned at time
t is

^xm~s!&sus(t)5m5hm~s!1v (
m50

`
e2t/a

am E
0

t

dt1•••

3E
0

tm21
dtm(

n50

`
e2(s2t)/a

an E
t

s

dtm11•••

3E
t

tm1n21
dtm1nF (

r 51

m1n

G~s,t r !Fm~ t r !

1G~s,t !Fm~ t !G . ~B1!

Using similar arguments as in Appendix A, the average
the Adaline rule can be written as a self-consistent equa
for s.t,

^xm~s!&sus(t)5m5hm~s!1
v
aE0

t

dt8G~s,t8!^Fm~ t8!&s

1vG~s,t !^Fm~ t !&s1
v
aEt

s

dt8G~s,t8!@ ỹm

2^xm~ t8!&sus(t)5m#. ~B2!

Note that̂ xm(s)&sus(t)5m5^xm(s)&s whens<t. Subtracting
Eq. ~27! from the above equation, one can derive

^xm~s!&sus(t)5m2^xm~s!&s

5vG~s,t !^Fm~ t !&s2
v
aE0

s

dt8G~s,t8!

3@^xm~ t8!&sus(t)5m2^xm~ t8!&s#. ~B3!

If we multiply Fm(t) to both sides of Eq.~16! at times, and
perform sequence averages analogous to Eqs.~B1! and~B2!,
01190
t

t

r
n

we obtain equations for the active and passive average
the activation-force correlation,

^xm~s!Fm~ t !&sus(t)5m

5hm~s!^Fm~ t !&s1
v
aE0

t

dt8G~s,t8!

3^Fm~ t8!Fm~ t !&sus(t8)5m1vG~s,t !^Fm
2 ~ t !&s

1
v
aEt

s

dt8G~s,t8!^Fm~ t8!Fm~ t !&sus(t)5m ,

~B4!

^xm~s!Fm~ t !&s5hm~s!^Fm~ t !&s1
v
aE0

t

dt8G~s,t8!

3^Fm~ t8!Fm~ t !&sus(t8)5m

1
v
aEt

s

dt8G~s,t8!^Fm~ t8!Fm~ t !&s .

~B5!

Subtracting Eq.~B4! with Eq. ~B5! leads to

Wm~s,t !5vG~s,t !^Fm
2 ~ t !&s2

v
aEt

s

dt8G~s,t8!Wm~ t8,t !.

~B6!

Multiplying the example Green’s functionD(r ,s) to both
sides of Eq.~B6!, integrating overs, and applying Eq.~12!,
one obtains Eq.~33!.

To obtain Eq.~34!, one replaceŝFm(t8)Fm(t)&sus(t8)5m
in the right hand side of Eq.~B5! with ^Fm(t8)Fm(t)&s

2v* t8
t dt1D(t,t1)G(t1 ,t8)^Fm

2 (t8)&s , and arrives at

^xm~s!Fm~ t !&s5hm~s!^Fm~ t !&s1
v
aE0

s

dt8G~s,t8!

3^ ỹmFm~ t !&s2
v
aE0

s

dt8G~s,t8!

3^xm~ t8!Fm~ t !&s2
v2

a E
0

t

dt1

3E
t1

t

dt2G~s,t1!D~ t,t2!G~ t2 ,t1!

3^Fm
2 ~ t1!&s . ~B7!

Multiplying both sides withDm(r ,s), integrating overs and
applying Eq.~12!, one finally reaches to Eq.~34!.
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