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Dynamical and stationary properties of on-line learning from finite training sets
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The dynamical and stationary properties of on-line learning from finite training sets are analyzed by using
the cavity method. For large input dimensions, we derive equations for the macroscopic parameters, namely,
the student-teacher correlation, the student-student autocorrelation and the learning force fluctuation. This
enables us to provide analytical solutions to Adaline learning as a benchmark. Theoretical predictions of
training errors in transient and stationary states are obtained by a Monte Carlo sampling procedure. Generali-
zation and training errors are found to agree with simulations. The physical origin of the critical learning rate
is presented. Comparison with batch learning is discussed throughout the paper.
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I. INTRODUCTION There were some attempts to understand on-line learning
with recycledexamples. Early researchers used the approxi-
In recent years, there have been many attempts to analyzeate Fokker-Planck equation to describe the learning pro-
the dynamics of learning from examples in classification and;ess[12,13_ The use of perturbative expansions of the mas-
regressior{1]. From a general perspective, this dynamics iste; equation was shown to be insufficient for a precise
typical of many other nonequilibrium complex many-body .4 icyjation of global properties of on-line learnifi]. The

systems, in which individual components collectively CON" yifference between batch learning and on-line learning was

tribute to the achievement of global objectives. Interestin : : )
examples can be drawn from the modeling of social behavi(%nves'“g""tEd to the first order of the leaming rats]. For

[2], economics and ecologig], patterns of routing in road general I'earni.ng rates, the exact solut'ion for the Hebbian rule
traffic [4], and telecommunications networj&). was derived in Ref[16]. Exact so_lutlc_)ns were found fc_;r
The dynamics of learning from examples in classificationlinear networks, and the generalization ability of on-line
and regression refers to the dynamical process of minimizinggarning was found to outperform batch learning if a bias is
the risk functions of the classifier or regressor, often via grapresent in the inpJtL7]. The dynamics of on-line learning in
dient descent, until a steady state is reached. Despite thgultilayer neural networks was analyzed by using the dy-
progress in understanding thteady-statédehavior of learn-  namical replica method and solutions were found in the limit
ing processe$6], the dynamicsof learning was much less of large sizes of training sefd8].
understood. This is probably due to the high complexity in A recent work based on the generating functional ap-
its analysis, since it typically involves the evolution of many proach is a good step forward towards a general theory of
microscopic parameters, each strongly interacting with otheescribing the dynamical and stationary properties of on-line
ers in a convolutional way. Yet, a number of important issuedearning [19]. It illustrates the mean-field character of the
in improving the learning efficiency depend on a better un-dynamics in its description in terms of an effective single
derstanding of its dynamics, including the speed of converexample. For random choices of the sequence of presented
gence, the early stopping point for optimal generalizationexamples, the dynamics is characterized by the appearance
the shortening of the plateau regime, and the avoidance af an example as a Poisson event in the learning sequence.
getting trapped in local minimf7—9|. Hence, it would be Steady-state properties were discussed by neglecting fluctua-
both useful and challenging to analyze the dynamics ofions in the learning force¢referred to as the mean-force
learning. approximation hereaftgr
On-line learningis a common mode of implementing In this paper, we propose an analysis of on-line learning
learning, in which an independent example is presented atith recycled examples using the cavity method. The cavity
each learning step. Significant progress has been made in theethod is a mean-field analysis first used in magnetic sys-
case of on-line learning oinfinite training sets[7,10,11.  tems[20]. It enables us to understand the properties of a
Since statistical correlations among the examples can be igystem by focusing on the response of the system to a single
nored, the dynamics can be described by instantaneous dglement added to it. It was later generalized to study learning
namical variables, leading to great advances in our undein neural networks with the advantages of a clear physical
standing of on-line learning. However, in reality, the samepicture and microscopic insights to both their equilibrium
restricted set of examples is recycled during the learning proand dynamical propertief,9,21]. The cavity method was
cess. This introduces temporal correlations of the weights isubsequently applied to analyze the dynamickaithlearn-
the learning history, rendering the analysis at best as an ajng, in which the entire set of examples is provided for each
proximation to the reality. learning sted8]. It provides dynamical equations and ob-
tains important results on the overtraining, early stopping,
noise effects, and average learning strategy.
*Electronic address: physlpx@ust.hk To adapt the cavity method from batch learning to on-line
"Electronic address: phkywong@ust.hk learning in this paper, there is a need to account for the
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following subtleties.(a) Averaging over the choice of se- wherey,=B-§" is the teacher activatiorz,, is a Gaussian
quencing the examples is now necess#ény.The measure- variable with zero mean and unit variance, anig the noise
ments of an example observed at an instant is now correlateamplitude.

with the instants when it was learned. This is due to the giant The examples are learned by a student network with the
boost of that example at a learning step, which upsets theame number of inputs and output. At each learning step
uniformity of the examples as in the case of batch learningone example in the training set is randomly drawn, and the

We remark that the subtleties of sequence-dependent dgequence of example labels is denotedod). If the ex-
namics are common in many other complex dynamical sysample drawn out at timeis o(t) then the weights are modi-
tems. In the modeling of economics, for instance, differenfied according to
sequences of the market state appearing in the minority game
may lead to different evolutions of the syst¢@®P]. System 3
responses to a market state should also be correlated with the ™)
instants when the state appeared in the market history. Simi-
lar correlations should also exist in other ecological and traf-
fic models. Hence, we hope that the present study of on-line
learning can provide insights to other dynamical problems.

The purposes of this paper ar@ to perform an exact Wherex,()=J(t)- & is the student activation: is the
analysis of the learning dynamics as far as the formulatioféarning rate and is the weight decaythe factorv is ex-
allows, so that minimal approximations are made, and deepéiuded to facilitate comparisons with the steady-state re-
physical insights can be extractedh) to illustrate the ana- sultg. The forceF(x,y) describes the learning rule,
lytical approach using the simple example of a linear learn-
ing rule, which can act as a benchmark for verifying the
validity of the theory, and a theoretical framework for more
complicated systems, such as nonlinear learning rules and
multilayer networks;(c) to explore efficient Monte Carlo
procedures implied by the distribution of example activations
predicted by the theory, which can be applied to the morevhere ® is the step function and is a parameter often
complicated casegy) to study the difference between on- referred to as the stability. The last term in Ed) is the
line learning and batch learning for general learning condi<dynamical noise term, often added to avoid the learning pro-

1 ~
t+ ) =30+ %{F(Xo(r)(t)vyo(o)ff(t)_"Ji(t)}

1
), W

y for Hebbian rule
F(x,y)=1{ y—x for Adaline rule (2)
V(k—Xy)®(x—xy) for Adatron rule,

tions. cedure being trapped in local minimum, withy;(t) 7(s))
The paper is organized as follows. In Sec. Il, we describe=2T dis/N andT is the dynamical noise level.
the dynamics of on-line learning. In Sec. Ill, we introduce In the limit of vanishing learning rate, the on-line dy-

the cavity method and derive the dynamical equations for th@amics described by Eql) is equivalent to the batch learn-
macroscopic measurementéa) G(t,s) and D(t,s), the ing formulation in Ref[8] when the time scale, weight de-
Green’s functions of weights and examples in response toay and the dynamical noise in the latter are multiplied by
stimuli; (b) R(t), the correlation between the teacher andfactors ofa/v, l/a, andv?/«?, respectively. However, for
student weight vectors, and(t,s), the autocorrelation be- finite learning ratev, the randomness of the learning se-
tween student weight vectors at different timés;the fluc- quence adds noise to the dynamics.
tuation of the learning forcéF2(t)). The Monte Carlo pro-
cedure to calculate the training error is also presented. In IIl. THE CAVITY METHOD
Sec. IV, we compare theoretical predictions with simulation
results. The average learning strategy in the long time limit is
proposed and compared with the performance of batch learn- Consider a new example 0 that is not included in the
ing. In Sec. V, we summarize our work and propose some@riginal training set. We define its activation at tirna the
future directions. In the Appendixes, we describe the mathnetwork trained without that example as davity activation
ematical details of the procedure of sequence averaging. hg(t), i. e.,hy(t)=J(t)- £. It is a random variable since the
network has not learned the information of this new ex-
Il. FORMULATION ample. When the size of the netwdxks very large hy(t) is
. - a Gaussian variable with meaR(t)y, and covariance
We consider a t.ralnmg.set <p)‘ex_amples generated by a C(t,5)—R(t)R(S), where R(t)=B-J(t) is the student-
teacher network wittN weightsB;, j=1,... N. For defi- = yonhor correlation at time and C(t,5)=J(t)-J(s) is the
niteness, we s¢B|=1. Each exampl@=1, ... p CONSIStS oy jent.student autocorrelation at tinteand's. Both R(t)
of an N~d|men5|onal input vectag”, and a teacher generated andC(t,s) are self-averaging in the limit of largs.
outputy, . It is convenient to introduce the parameter Now we consider the evolution of another netwdfkt),
=p/N. The inputs{]® are Gaussian variables with zero meanin which the example 0 is added to its training set. To ensure
and unit variance. The outputs are that the probability of occurrence of the new example 0 and
the old ones remain identical, the new example sequence
_ o°(t) is obtained from the original example sequernxie)
Yu Yutez, for regression, according to

A. The cavity activation and the Green’s functions

B sgnly,+ez,) for classification
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y 1 amples caused by the added example, and is referred to as
o(t)  probability=1— p the Onsager reaction term. Describing the response to the
aO(t) = (3)  driving term by the Green’s function, E¢8) reduces to

1
0 robability= —. v ,
p y= p+1 \]Jo(t)_JJ(t): N kt2,<t ij(t,t )5(700/)0
In the new example sequened(t), at each learning step,

the weight is modified according to X[Fo(t') &~ F(r(t’)(t’)‘fg(t,)]a 9
J? t+% ZJ?(I)JF %{F(Xgo(t)(t)S/(,o(t))ﬁ’o(t)—N?(t)} ;/r\:f;eirteercgjt,;\(lgse)xir')srg;igrrre—dependent Green’s function with

N %m(t), @ Gi(t9)=8G0-5)+ 2 2 60t

Wherexgo(t)(t)EJO(t) . &0 Comparing the networka(t) X gf(t’)'::r(v)(t')ffr(t’)Gm(t',S)- (10

andJ;(t), we obtain from Eqs(1) and (4), The Green’s functiorG (t,s) is the response of the weight

0 v 0 ~ Ot J. at timet due to a unit stimulus introduced at tirs¢o the
[J;(0=J;(0]= N{F(X(ro(t)(t)'yffo(t)(t))gi © riJght hand side of Eq(1) corresponding to weight,, in the
_ limit of vanishing magnitude of the stimulus.
—F(xg(t)(t),yo(t)(t))fj’(t)}, In the limit of large N, we can apply a diagrammatic

5) analysis similar to the case of batch learniBg In contrast

with batch learning, we need to first average E@.and

where 3 is the time shift operator. Le&©(t—t') be the (1Q) over the distribution of example sequence u_sing(B)q.
bare Green’s function This can then be followed by the usual averaging over the
’ N distribution of background examples, as in the case of batch
)( v)\)N(tt’ N learning. The result is that we can neglect the effect of re-

S 1+Uk
N

1-—= (6) moving the background example represented by the second

1
Gmkt—V)=C%t+—t“——- N
term in the square bracket of the right hand side of @g.

N

It satisfies Gjk(t,s) is self-averaging and diagonal in the lafydimit,
so thatG, (t,s) = G(t,s) 6jx , whereG(t,s) satisfies the Dys-
~ VA ) :
(S— 1+ W G(O)(t—t’)z Sy - 7) on’s equations,
, on G(t,s)=G<°>(t—s)+vf dtlf dt,GO(t—ty)
We assume that the adjustment frapt) to Jj(t) is small
so that linear response theory is applicable. Then on separat- (D = 11
ing the contributions from the new example and the old ones, (Dot t2)F oy (12))C(t2,9), (1D
we have v ,
. v . Do(s(t,s)=6(t—s)+ ;f dt;G(1,t1)F () (t1)Dy(s)(t1,5),
JH-30=y zt GO(t—1") 8,010 (12)

where GO(t—s)=0(t—s)exd—uv\(t—9)] is the bare
Green’s function.D ;5 (t,s) is the example Green's Func-
v ) tion, and(-) represents average over distributions of both
+= X GOU—t) 8,000 ET ™) example sequences and examples.

kit <t We emphasize that the averaga(,(tz)(tl,tz)F,’,(tz)(tz)>

X F(’T(t,)(t')gg(t')[JE(t')_Jk(t')], | s diffe_rent from the av_erag(dDM(tl,tz)F;(tz)). The former
specifies that the functioR’(t,) andD(t;,t,) are due to the

whereF ,(t) is the shorthand notation of the force due toexample that was picked from the example sequence for
exampleo(t) at timet, andF’ represents the derivative of learning at the particular instaty. During on-line learning,
the force with respect to the activatienWe can now inter- the activation of this example receives a giant boost at the
pret this result from the viewpoint of the linear responselearning instant, as mentioned later in the text discussion of
theory. The first term on the right hand side describes théig. 1. This makes its distribution different from that of a
primary effects of adding example 0 to the training set and isandomly drawn examplg, whose previous learning instant
the driving term for the difference between the two networksremains unspecified. Hence, the former average will be re-
This occurs at the discrete instants witf(t’) =0 by adding  ferred to as amctiveaverage, in contrast to the latter, which
the force due to example 0 and removing that due to thés referred to as passiveaverage.
original exampleo(t’). The second term describes the Nevertheless, in the case of linear rules used for illustra-
many-body reactions due to the change of the original extion later in this paper='(t) is a constant independent of

X[Fo(t") &0 —F oy (t) €71]
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07 r with Xax @and Xmin @s the edges of the spectrum given by
XmaxXmin=UN+0v(1+1/\Ja)?, respectively.

The number of timea that the new example 0 appears in
time t follows a Poisson distribution with medh«. If these
appearances occur at times, ... t, (th<...<t;<t),

Eq. (9) reduces to

h and x

RO=30+5 = GLtFt)e. (19

Multiplying both sides byg}) and summing oveyf, one de-
rives the relationship between the cavity activation and the
generic activation of example 0,

m

xO(t>=ho<t)+v§l G(t,t,)Folt). (16)

. o This relation enables us to express the cavity activatig@n

FIG. 1_. The evolutlon_ of the activations of a randomly selected¢ any example as a function of its generic activation
example in a network withN=1000¢=0.3x=0.8p=0.1, and\  , y ° "t ) x(t) at the previous and current learning
_=O.1 using t_he Adatron rule. See text discussions for the explanq—nstants, and attributes physical meaning to the single effec-
tions of the lines and symbols. tive example in Ref[19]. Hereafter, we omit the example
label if no confusion occurs.

The simulation results in Fig. 1 verify the relationship
between the cavity activation and the generic activation for a
randomly selected example. Up te=3, the example is
drawn from the learning sequenedt) nine times, close to
the Poisson average tfa=10. The solid line describes the
evolution of x(t), which exhibits giant boosts at the nine
learning instants indicated by the vertical dashed lines. The
dotted line describes the evolution of the cavity activation
rt|1(t), which is obtained in a second network that uses the
same learning sequeneodt), except that learning is paused
when the example is drawn. Since the example and this net-
work are uncorrelatedy(t) evolves as a random walker with
appropriate means and covariances. The filled circles indi-
cate the values of the cavity activations predicted by Eq.

Hence, the active average in E@.1) becomes identical to
the passive average. Thus, the Dyson’s equatidds and
(12) becomes identical to those of batch learnj8g after
rescaling the time and the weight decay.

In the case of Hebbian ruleF'(x)=0 and D ,(t,s)
=06(t—s). The Green’s function becomes identical to the
bare Green’s function.

In the case of the Adaline rul&’(x)=—1 andD ,(t,s)
=D(t,s) independent of examplg.. The weight Green’s
function becomes invariant under translation of time, and cal
be written as

G(t,s)=G(t—s,0)=f p(x)e X9y, (13

wherep(x) is the density of state (16), using the Green’s functions measured by comparing
N AT learning with and without stimuli23]. They show remark-
p(X)=(1—a)O(1—a)S(x—v\)+ max mn” able agreement with the simulatégt).

To derive the distribution of generic activations, we first
consider the distribution of cavity activations, which is given
(14)  in the Gaussian form ah learning steps and timg(=t) by

v
27 —(X—0vN\)
a

1 m
exp{ 5 ijZ:O [h(t) —R(t)yl(C—RR);[h(t) = R(t)y]
J(2m) ™ lde{C—RR")

whereC—RR' is a square matrix with size+1 and C—RR");;=C(t; ,t;) —R(t;)R(t;). The corresponding distribution of
generic activations can be written as

dh(to), - - . h(ty)]]
[ X(to), -+ X(tm)]
whereh(t;) is a function ofx(t;), . . . X(t,,) defined by Eq(16), and the dependence gmay arise from the learning forces.

Since dh(t;)/ax(t;)=0 for t;>t;, anddh(t;)/dx(t;)=1, the Jacobian reduces to 1. Therefore, the distribution of generic
activations can be expressed as

P(X(to), LR ,X(tm)|y,’9): P(h(to), e ,h(tm)|y) ’ (18)
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1 m
exr{ =5, 2, () =REYI(C—RR);h(t) ~R(t)y]

J(2m)™lde{C—RR")

P(X(to), - - - X(tm)|y,y)= : (19)

whereh(t;) are given by Eq(16). In general,h(t;) can be a nonlinear function of(t;), ... x(t,). Hence, the generic
activation distribution in Eq(19) is no longer Gaussian, although the cavity activation distribution in (E@). is. This
characteristic of on-line learning is demonstrated in numerical simulations for the Adatron rule {i2Ref.

We now illustrate how the above result can be applied to specific cases. For the Hebbian r(16) Eoplies thath(t) is
not an explicit function of(t,) at the previous learning instartts,

m
h(t):x(t)—yz1 exgd —vA(t—t,)]. (20)
This enables us to write down the instantaneous activation distribution, given the learning instantst,, of the example,

m 2
ex% - %[C(t,t)— RA(t)]* x(t,-)—§/§_)l e "MW _R(t)y ]

p Vitg, oo tm)= - o
(X, toly,yits, - - - tm) V27 C(t,H) —RA(1)] -

The distribution is then averaged over the time distribution  For the Adaline rule, substituting(x,y) =y—x into Eq.
and the Poisson distribution of learning instants (16) yields a linear relation between the student activation
and the cavity ones,

PO, ty,Y)=(POXtY.Yitrs - ootV (22 . .

. to)= 1+0vG)o M h(t) + G.y|, (25

where(-), represents averaging over the distribution of se- X(to) 20 (1+0G)o { (t) USZZH 'Sy} (25)
guences. The sequence average of an instantaneous quantity

¢ at time t depending on the previous learning instantswhereG is a square matrix with sizen+1 andG,s=G(t,

ty, ... tyis —t,,0) fort,>ts andG,s=0 for t,<ts. Inserting the mean
and variance of the cavity activation, we see tkt) is a
© eta Gaussian variable with mean and variance
(Wtlty, . tm))o= 2 — fdtl...
m=0 0

(X(to))y= 20 (1+vG)o F<<tr>y+u5=2+l Gr&}

xftm*ldtmw(qtl, ), (23
0

m

2 _ -1 -1
where the factor ofn! in the Poisson distribution is canceled A (tO)_,lsE:O (1F0G)or (1+vG)os [C(tr 1y)
by the number of permutations in ordering . . . ,t,,. Using
the Hubbard-Stratonovich identity, we can factorize the inte- —R(t)R(ts)]. (26)

grals overt,(1=<r=m). We arrive at the result
To obtain the activation distribution in such an application as

dx the average training error, we need to further average the
P(X,t|y,§/)=f—exp{ii[x_R(t)y] Gaussian distribution in Eq(26) over the learning se-
2m guences.
1 In general, for nonlinear learning rules, the linear inver-
— E[C(t’t)_ R2(t)]x2 sion of Eq.(16) to obtain the student activation is not pos-

sible, and the activation distribution becomes non-Gaussian,

1 [t even for a given sequence of learning instants. Nevertheless,

+ —f dg exp(— if&e—vh(t—s)) -1]t, a useful identity exists for the sequence average pertaining to
aJo an example, as derived in Appendix A,

(24 |
(x(O),=h0+ 2 [ GUGLUNFL ), @
0

which agrees with the rule-specific derivation in Réf6].
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This equation of the sequence-averaged activation is th@/e remark tha{x,(s)F ,(t)),| -, . iS an active average,
same as that of the self-consistent equation of the activatiowhich is distinct from thepassive averagéx,(s)F ,(t)),,

in batch learning, after rescaling the time and weight decays/here the example learned at tirh&s not necessarily:.

[8]. For the Adaline learning rule, Appendix B shows that the
average difference W, (s,1)=(X,(S)F (1)) ol o(t)=
—(x,(s)F (1)), can be expressed in terms of Green’s func-

) . tions and learning force,
To analyze the student-teacher correlation, we multiply

B. The student-teacher correlation

both sides of Eq(1) by B; and sum ovej, yielding in the
limit of large N,

RO =v{(YuF (D)) (28

d-i-)\
av

where(-),, represents averaging over the distribution of ex-

amples.

For the Adaline rule, the solution dR(t) in Eg. (28
involves(x,(t)),. By virtue of Eq.(27), and exploiting the
example Green’s function in Eq12), we obtain

t
Xu(1) = fodtlD(t_tl)

X

v ([ ~
hM(tl)-i- Zfo dtzG(tl—tz)yM . (29

Applying Laplace transform to Eq29) and then Eq(28),

~ VY=
h#(Z)‘F EG(Z)

(X.(2)),=D(2)

~ a - |~ va.
(z+uvN)R(2)=v E_D(Z) R(z)+EG(z) , (30
where
[ 2 s
_ — for classification,
a=(Y,uY )= m(1+e?)

N

Here G(z)=/;dte ?'G(t,0) and D(2)=/5dte ?'D(t,0).
Inverse Laplace transform yields

for regression.

_ a— Xt

R(t)zadep(X)(X—v)\) X

(31)

W, (s,t)=v ftsdt’D(s,t’)G(t’,t)(Fi(t))o. (33)

A similar equation for the passive average is also derived in

Appendix B,

<X/,L(S)F,u.(t)>(7': f:dtlD(S!tl) h,u,(tl)<':,u(t)>(r

v [t ~
n ;fo dt,G(t1,t2) YW (F (1)) o

1)2 min(t,s) S t
——f dtlf dtzf dtzD(s,t,)

X G(tp,t1)D(t,t3)G(tg,t)(F2(t1), -
(34)

Therefore, one can perform the Laplace transforms

E(W,Z)Efo dsfo dte WS ZiC(st),

(Fu(WF(2) o)
= fo dsfo dte_WS_Zt«F#(S)F,u(t))z»,u'

After substituting Eqs(33) and (34) into Eq. (32), and per-

forming elaborate algebra, one obtains an equation of the

weight correlation

which is the same as that in batch learning after rescaling. and an equation of the force autocorrelation

C. The student-student autocorrelation and the force
fluctuation

To analyze the student-student autocorrelation, we multi-

ply both sides of Eq(1) by J;(s) and sum overj, thus
obtaining in the limit of largeN,

d
— 40U\

dt C(t!S):v<<X,u,(S)F;L(t)>0'|a'(t)=;L>M' (32)

- D(w)-D b ID(w)+D(2)—1
D= <wV3_Z<z>|V72+aa[ (W\)/vz (2-1]
+ (B2 (W+2)) )+ 2ol
" 7 2w+ 2)D(w)D(2) ]
(35
(FLWFL(2) o),
- - 1 ad® -
=D(w)D(2) W—Z+ W[D(WHD(Z)—Z]
2
+C(w,2)+ %é(w)é(z)((fzi(w+z)>g)ﬂ . (36

Here,
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for regression.

PHYSICAL REVIEW E 67, 011906 (2003

ing. It vanishes when— 0. However, for finite learning rate
v, one can see that this term plays a similar role as the
dynamic noise. This can be seen by considering the

o my 2041
We note the presence of the force fluctuation term@Symptotic limit of the second term, whe(&<(t")) ap-

((FA(w+ 7)), In Egs.(35) and(36). This term is absent in

the corresponding equations in the case of batch learning.

This can be seen by observing the scalirgsi~G(z)
~((F2(W+2)),),~v " in Egs. (35 and (36), so that the
coupling of weight correlatiol©(w,z) and force autocorre-
lation ((F ,(W)F ,(2)),) . Vvia the force quctuatior((FfL(w
+2)),), Will approach zero whem is vanishingly small,

proaches the steady-state value(Bf), yielding
—x|t—s| _ efx(Hs)

S(F?) f dxp(x) (X~ \) (39

X
Comparing with the dynamical noise in the third term, we
see thatF?) is a measure of an effective temperature, and
the two noise contributions differ slightly in their spectrum

of relaxation rates. Therefore, in practice, force fluctuations

which indicates that this temporal correlation is unique tOcan also assist the |earning dynamics to avoid being trapped
on-line learning. In contrast to batch learning, the presence metastable states, playing the same role as dynamical
of the force fluctuation term increases the weight correlatiomoises to batch learning. Hereafter, we Tet 0 in our final

via Eq. (35), which in turn increases the force fluctuation regyits.

itself via Eq.(36). As we shall see, this coupling leads to @ To obtain the force autocorrelatiof{F ,(S)F ,(t))o),.

collective r_elaxatiqn mode. “we substitute Eq(35) into Eq.(36) and perform the inverse
Performing the inverse Laplace transform, one can obtai gplace transform, which yields,

the autocorrelation

b ((F(OF ,(5)),),=b+ 1f dxp(0)| 22 + 22| x— v v)
o u=bt — —oh——
C(S.t)ZJ dxp(X)(X—vN\) Xv-l-az X—v)x—%” . a # v P a a
—XS —xt X —D\ 2 —e X 1_e—Xs)

» l1-e (1—e ) (X—vN\) ~ <

X X o
min(t,s , —(X—0vA\ —(X—0vA\
+vfdx,)(x)(x—vx)f 9 e xrs-at) e )( ) (x=uh)
0

1—e %S min(t,s)
e Xt=s|_ g—x(t+s) X ) +f dt'(Fz(t'»
><<F2(t’)>+Tf dxp(x) , X 0

X
(37)

where(F%(t))=((F2(1)),) . In Eq.(37), the first and third
terms are similar to those in the autocorrelation function in
batch learning. The second term represents the contributioquatingt ands, the force fluctuation is given by the inverse
induced by the force fluctuations arising from on-line learn-Laplace transform of

X j dxp(X)(x—v\)2e X(t+s=2t),

(39

b+1fd X—UN bv+ ) \ v X—v)\+2v)\ X+U\

- zZ v Xp(X) x2 |« PTG | 2 2x T 2 x z

<<FM(Z)>0’>/L: 1_J dx (X) (X_U)\)Z (40)
P zZ+2X

The final expression consists of four contributions. First, theThe second and third contributions come from the relaxation
pole atz=0 gives the steady-state value of spectrum of force fluctuations ranging throughnf,, Xmax
and (Xmin2Xmay, respectively. The fourth contribution is
described by the existence of a collective relaxation mode

1 vA\?\[bv v arising from the force-weight coupling, which is a unique
b—; dxp(x)| 1— 2 o TAXTuA— phenomenon of on-line learning. Its relaxation ratg is
(F3)= ) given by the pole
(x—v\)?
1- pr(x)T (x—v\)?
(41) 1- pr(X)WZO- (42)
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This is called slow mode in Refl17]. When\ , approaches c e tla ty-1
zero, the steady-state force fluctuation and student weingt(t)zJ’ dyf dyP(y,y) >, j dty .. f dty,
will diverge. The critical learning rate at which the weight m=0 o™ Jo 0

diverges in given by

% [ axOPOaly Tty -t Ol-Tx(0]. @9

_ 4 43) This can be computed by a Monte Carlo sampling procedure,
2-M1+atah—(1+a+an)?—4a] which has been shown to be free from finite size effE24.
For general learning rules, we adopt the procedure with the
following steps:
which is also derived through the spectral analy4id. (1) For a given training example, generate the teacher
activationy andy according toP(y,y).
(2) For timety(=t), generate the number of timesthe
D. The training and generalization errors example appears in a training sequence from time @,to
cording to a Poisson distribution with metgic.

Uc

The performance of learning is measured by the training'ﬁ"C 3G he i hat th |
and generalization errors. Here, we provide their expressions (3 Generate the instants, . .. ty, that the example ap-
for noiseless examples. Expressions for other cases can gars in the training sequence according to a uniform distri-
derived similarly. In classification, the generalization error is ution between 0 anth, with 0<tp,= . .. <t;<to.

. o (4) Generate the cavity activatiohgt,), r=0, ... m ac-
defined as the probability that mew example presented to ; : IS
the network ig miscla)gsified E (t)=((§[—I(DB~§’)(J(t) cordlng to the Gaussian dlstrlbuthn with mea(fgr)y and
-&])g. It is determined b the magnitude of the studentcovananca:(tr’tS)_R(tr)R(tS)' This can be carried out by
£ y 9 generating the independent Gaussian variabigs (k

vectorC(t,t) and its correlation with the teacher veciit) =0,...m) with mean 0 and variance 1, and transforming
[8], that is, them toh(t,) via
Eq(t)= Los iR 44 S i
g(t)=—cos Tk (44) h(ti)=R(t)y+kZi Axzc, O<i=m (46)

and the matrix elementd;, are obtained from the recursion
Analytical expressions dR(t) andC(t,t) are derived in pre- relations

ceding sections for the Adaline rule. A = JC(l- t)—R2t 4
The training error is defined as the fraction of examples in = VC () (tm) @7
the training set that are classified wrongly, i.e., and for I=j<i=m,

j—1
C(tm—i 1tm—j) - R(tm—i)R(tm—j) - kzl Am—i,m—kAm—j,m—k

Am—i,m—j:

Am-jm-
i—1 1/2
Amfi,mfi= C(tmfi,mfi)_ Rz(tmfi)_gl Arzn—i,mfk . (48

(5) Computex(t;) according to Eq(16). This enables us priori. For general learning rule§(t,s) can be obtained by
to collect samples for the distributioR(x(to)|y,y), and  solving the Dyson’s equations Egd.1) and(12). Since the

hence estimate the training error. equation involves an average over the distribution of learn-
(6) Steps(1) to (5) are repeated to yield sufficient amount ing sequence and examples, it can again be obtained by a
of statistics. Monte Carlo sampling procedure. SimilarBB(t) andC(t,s)

For the Adaline learning, stefb) of the Monte Carlo can be obtained by solving Eq&8) and (32) by Monte
sampling procedure can be further simplified by exploitingCarlo sampling. These will be left for further studies. Here,
the Gaussian nature of the generic activation distributionfor the exposition of the cavity method, we focus on the
Using Eq.(26) to find the mear{x(t,)) and variancer®(t;),  Adaline learning, where these functions can be obtained ana-
the contribution of an example to the training error is giveniytically as described in the preceding sections.
by erfd (x(to) >§// V20(to)] . For the purpose of consistency check, one can also obtain

The above procedure assumes that the Green’s functiathese functions directly from simulations and plug into the
G(t,s) and the correlation®(t) and C(t,s) are knowna  Monte Carlo sampling procedure to check whether the gen-
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erated activation distribution agrees with simulations. 124 (a)
The proposed Monte Carlo procedure is similar to the | F(t)
effective single pattern process in REt9]. The difference 104
lies in the generation of the learning instants of an example
according to the Poisson distribution. In REE9], an indi- 0.8
vidual Poisson number with mea « is generated for every & |
time incrementA in the learning history. Here, the sampling < 0.6 CltY
w A
efficiency is improved by a single Poisson numbemith 3] i
meanty/a and m learning instants with uniform distribu- 5> 0.4 R(t
tions. For general learning rules, even if the Green’s func- i
tions and correlation functions have to be generated from the g2 4
Monte Carlo sampling procedure, it is possible to use simi- ]
larly efficient samplings. This will be left for further studies. 0.0 ——T71
While the Monte Carlo sampling procedure is useful in 0.0 0.5 1.0 15 2.0 25 3.0
studying the transient behavior of learning, it can also be t
used to extract the stationary properties. At a very large ob-
servation timet, we look back at the learning history of an 0.5 -

example by the network. Reasonably, only those learning ]
events occur recently have detectable contributions to the g4
distribution of the student activatiox(t) in Eq. (26). There- |
fore, we can calculate this distribution to any desired preci- g3
sion by adding the earlier learning events one by one, untilw”
certain stopping criteria are satisfied. Since the time intervals
between successive learning events obey an exponential di
tribution, we have

I” 0.2

0.1 5

»ds, ]
P(x]y,y)= lim I|mH —e (/e o777 71—
M—owtol =1 0 @ 0.0 0.5 1.0 15 2.0 25 3.0
m t
Pl xtly,yit—sy, ... yt_zl s,). (49) FIG. 2. The evolution of{@) teacher-student correlatidR(t),

student autocorrelatio€(t,t), and force fluctuation( F2(t)), (b)

) ) o ~ training errorE; and generalization errdg, for Adaline learning at
For the Adaline learning, the distributioP(x,tly,y;t  4=1.2,=1.9, and\=0.8. Solid lines: the cavity method, with
=g, ... t—2{Ls) is replaced by a Gaussian distribution analytical results foR(t),C(t,t),(F2(t)), E4 and Monte Carlo re-
with mean and variance given in Eq26). We find that the  sults forE, averaged over 500 000 samples Symbols: simulations
contribution of earlier events approaches zero very quicklyaveraged over 100 samples with=500.

asm increases. Thus, we only need to invert small matrices

in evaluating the training error at a steady state. the random drawing of examples at each learning step is
equivalent to the external dynamical noise in batching learn-
IV. RESULTS AND DISCUSSIONS ing. Thus, the dynamical variables will fluctuate around their

temporal average even without other external noises. As a

Figure Za) shows the transient behavior of the three macesult, the mean-force approximation is only valid when the
roscopic parameters, student-teacher correlation, student aearning rate and the sequence noise is small. As shown in
tocorrelation, and force fluctuation for typical learning pa-Fig. 3, it has an increasing discrepancy with simulations
rameters. The training error and generalization error arevhenv becomes large. The critical learning ratg=2(1
shown in Fig. 2b). The theoretical predictions have an ex- +\) estimated by the mean-force approximation is larger
cellent agreement with simulations. than the simulation result. This discrepancy can be attributed

Figure 3 shows the generalization and training errors ato the omission of the force fluctuations therein.
the steady state. The theoretical predictions agree well with An important question is whether on-line learning can
the simulation results. The learning dynamics diverges at thperform as well as batch learnifg5,2€. We have proposed
critical learning ratev.. It is also observed that strong an averaged strategy in the context of batch learning, predict-
weight decays tend to restrain this divergence at large learnng that dynamical noise can be averaged over to yield per-
ing rates, pushing . to higher values. On the other hand, formances approaching noiseless learn{i&. Since se-
strong weight decays increase the generalization error wheguence noise in on-line learning has similar effects as

v is small. dynamical noise, we adopt the same strategy to improve per-
In Fig. 3, we also present the results obtained by thdormance of on-line learning.
mean-force approximation adopted in Rf9]. As we have In average learning, we first wait for the system to settle

shown above, in the steady state, the sequence noise duettothe steady state, and then monitor the student weight vec-

011906-9
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0.50

0.45

* 0.40 -

0.35

0.30

v

FIG. 3. The dependence ¢& the training errorE; and (b) generalization erroEy on the learning rate for «=0.5. Solid lines:
steady-state results of the cavity method for 0.4. Dashed lines: steady-state results of the cavity method #00.8. Corresponding
symbols: simulations averaged over 100 samples With1000 andt=20. Dotted lines: the mean-force approximation Xor 0.8.

tor for an extended period of time. We use the weight vector V. CONCLUSION

averaged over the monitoring period 7,

=lim
t—+

The average weight amplitude is given by

— 1 (t+r
C(T)=|im;f dt'C(t,t+t").
t

t—o

We have analyzed the dynamics of on-line learning with

t+7 ’ ’ H . .
LUT[TTI()dt, as the estimated student vector. restricted sets of examples, which are randomly recycled.

Using the cavity approach, we can derive equations for the
macroscopic parameters describing the learning dynamics.
They are solvable for linear rules such as the Adaline rule,
yielding results which agree with simulations. We also show
that the student in on-line mode can learn as well as that in
batch mode, after it is averaged over a monitoring period at

] . the steady state.
Using Eq.(37), we obtain Our work represents a step forward from two recent treat-
ments[17,19. Compared with Ref.17], we have found that

C( T):f dXP(X)X_Z)\ b_v+a2 X—D\— K) ity activations, and made explicit the distribution of activa-
X o o
v X—UN e X"—1+xr 05 |
+ —(F? de X ( ( , '
5(F%) p(X) NP
(51
0.4 |

where(F2) is given by Eq.(41). We note that wherr be-
comes very large, the contribution due to force fluctuationsu’®

vanishes, making:(7) approach the result for batch learn-
ing. Hence, theaverage learning strategyields a generali-
zation performance as good as that of the batch miode;
pendent of the learning rate, as long as it is below the 02|
critical value for divergent learningFigure 4 shows that the
generalization error of on-line learning is equal to that of the
batch mode av=0, and gradually grows larger whan 0.1 s ‘ ‘
increases. When the monitoring timéncreases, there is an 0 1 2 3
impressive reduction of the generalization error compared v

with its instantaneous values. The longer the monitoring time  F|G. 4. The steady-state generalization effgraveraged over

7, the smaller generalization error. In the limit of very long gifferent monitoring times at=2 and\=0.2. Symbols: simula-
monitoring time, the generalization ability becomes equal taions  averaged over 10 samples  with N=1000,

that of the batch mode for all values ofbelowv., and r=0(®), 2(H), 5(¢), 10(A), and 20 ). Corresponding
jumps discontinuously to divergencewat. lines: theory.
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tions, which is a superposition of Gaussians for the Adalindems. Furthermore, we have illustrated the need to
rule and each weighted by a Poisson distribution. As a resultjifferentiate between active and passive averages when we
our framework can be used to analyze the training dgqor analyze responses to system states appearing as sequences in
More importantly, it has the potential to be extended to anaon-line processes. Also, the cavity method provides a means
lyze nonlinear and multilayer networks. Compared with Ref.to compute the difference between the active and passive
[19], we have based our analysis on a more physical picturéverages. It also provides a Monte Carlo sampling procedure
For example, we have made explicit the difference betweeR@Sed on Poisson-generated events to study the dynamics.
the active and passive averages involving the activation of affn€ Possible application of these concepts may be found in
example and its learning force at a previous instant. Thidh® minority game, where the sequence of market states de-
enables us to analyze correctly the network behavior at largiermines the evolution of the market behavior, analogous to
learning rates, where the mean-force approximation does ndf€ Way the sequence of training examples determine the
apply. The physical insights will be useful when analytical "€twork behavior in on-line learnin@2].

approximation schemes are devised for more complex net-
works.

However, our analysis shows that it is difficult to obtain a
concise description of the steady-state behavior of on-line We thank Ton Coolen for meaningful communications.
learning. The mean-force approximation in REf9] repre-  This work is supported by the Research Grant Council
sents a bold attempt towards this goal, but it works for smalbf Hong Kong (Grants No. HKUST6157/99P and
learning rates only. Here, we derive the steady-state activaHKUST6153/01P.
tion distribution in Eq.(49), but it depends on the previous
history of learning instants, and no instantaneous description
of the distribution is available. As a result, it seems that a APPENDIX A: SEQUENCE AVERAGE OF THE STUDENT

Monte Carlo sampling procedure is so far the best approach ACTIVATION
to find the steady—state dlstr.|but_|on, . According to the Eq9.23) and(16), the sequence average
. We have achl_eved our obj_ectlve of. benchmarking the CaVar the student activation of an example is
ity approach using the Adaline learning. The next step will
be to extend the method to more complicated situations such
as nonlinear and multilayer networks. We may devise effi- (x(t)),=h(t)
cient Monte Carlo sampling procedures to solve numerically -
the equations for the Green’s functions, the teacher-student + E
correlations, and the student autocorrelations, making use of =1 M
the Poisson distribution of the learning events for a single
example, the Gaussian distribution of the cavity activations,
and their causal relations with the generic student activa-
tions. Reordering the summations and the integrations before and
The cavity analysis of linear networks is also the founda-aftert,
tion of approximate descriptions of the stationary behavior of
nonlinear and multilayer networks. One may describe the
steady state by fluctuations about an averaged state. The fluc- c e ta Mooy ¢
tuations can be approximated by linear deviations which can (x(1)o= h(t)+va:l o™ 21 jodtr Jt dtp—- -
be analyzed by the cavity approach analogous to the Adaline '
benchmark. The present work is moving along this direction. t t tm—1
th dtl[ fo dtrﬂmf dtmG(t,tr)F(tr)},
2

ACKNOWLEDGMENTS

e*Ua

t t m
fdtm---fzdtlﬁ G(t,t,)F(t,).
0 0 r=1

(A1)

Recently, various approximation schemes have been pro-
posed in different learning regimes of complicated networks
[17,25,27, yielding results with varying degree of success. (A2)
For example, the conditionally Gaussian approximation can-

not capture the sharp peaks in the activation distribution degnare we have made implicit the dependencg @f) on the
veloped at the late leamning stage of nonlinear rues., ,revious learning instants. 1, . . . t,,. Since the integrand

Adatron Igarning On the othe_r hand, fror_n the perspectives;,, the square bracket does not depend on the values of
of the cavity method, the nonlinear mapping from the Gauss _t,_,, the integration over these variables simply

ian cavity activations to the generic activations can lead t(blwes the factor of{—t,)'~/(r —1)!. We further note that
sharp peaks in a natural wdg]. It is hoped that the cavity ' B

framework can provide useful insights to improved approxi-
mations in the future. L

From a broader perspective, our work has developed con- > > m s > m_r 1

R R . . . m=1r=1 O m-r=0 ¢ r-1=0 a

cepts which will be useful in the dynamical studies of other (A3)
on-line systems, say, in economics, ecology, and traffic mod-
els. We have demonstrated how sequence averages can pro-
vide precise descriptions of the typical behavior of these sysand then derive

e—tr/a «© e—(t—tr)/a
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v (t
(X(1)),=h(t)+ ZfodtrG(t,tr)

—t /a t,

dt,.q- -
0

e

tm-1
f dtpF(t,)
0

(A4)

m—r

From Eq.(23), the summation in the square bracket is just
the sequence average of the activation at timeyielding

Eq. (27).
APPENDIX B: SEQUENCE AVERAGE OF ACTIVE AND

PASSIVE CORRELATIONS

From Egs.(16) and (23), the active sequence average at
time s of the activation of examplg that is learned at time

J<0

e (s—t)/a
n

[

(Xu(SN ol o=p=u(8)+v >

m=0

—tla

dt,- -

s
f Aty
t
m+n

21 G(s,t)F (1)

am

to1 *
xfm dt, >,
0 n=0

tmin—1
X dtmin
t

+G(s,t)FM(t)}.

(¢

(B1)
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we obtain equations for the active and passive averages of
the activation-force correlation,

<X/L(S)F,u(t)>(r|(r(t):,u
v (t
=h,(s)(F (1)), + ;fodt’G(S,t’)
X(F Wt )F u(0) ooty = u TGS H(FL(D))

v (s , , ,
2 ft At (St )(F (' )F (D)oo

(B4)

v [t
(K (SF D), =S (F L0} + = [ atGist)
X<F;L(t/)|:,u,(t)>o'|a'(t')=,u
v S
+ Eft dt'G(s,t")(F ,(t")F (1)) .

(B5)

Subtracting Eq(B4) with Eq. (B5) leads to

W, (s,)=vG(s,1)(F2 (1)), — %ftsdt’G(s,t’)Wﬂ(t’,t).
(B6)

Using similar arguments as in Appendix A, the average forMuItipIying the example Green’s functioB(r,s) to both
the Adaline rule can be written as a self-consistent equatiogjqes of Eq/(B6), integrating ovess, and applying Eq(12),

for s>t,

t
(K9 elotr-s=hul$)+ = [ UGS NF L),
v (S ~
+UG(S,(F (1) + Eft dt'G(s,t)[y,
_<X,u(t,)>a'|(r(t):;4]- (B2)

Note that(X ,(S)) | o(1)= . = (X,.(S))» Whens=<t. Subtracting
Eq. (27) from the above equation, one can derive

<XM(S)>U|U(t):M_<XlL(S)>O’
v S
=0 G(s,1)(F (1)), — ;fodt’G(s,t’)
(B3)

X[<X,u(t,)>(r|0'(t)=ﬂ_<X,u(t,)>o']'

If we multiply F,(t) to both sides of Eq(16) at times, and
perform sequence averages analogous to @&{9.and(B2),

one obtains Eq(33).

To obtain Eq.(34), one replace$F ,(t")F (1)) olo(tr)=
in the right hand side of Eq(B5) with (F,(t")F (1)),
—v [ dtD(t,t;)G(ty, t')(F5(t')),, and arrives at

(X, (S)F . (1)) s=h ,(S)(F (1)), + %f:dt’G(svt’)
XY, F u(1))g— %f:dt’G(s,t’)
v? [t
XX, () (1)~ — fodtl

X ft dt,G(s,t1)D(t,t5)G(t5,t7)
ty

X(F2 (1)), (B7)

Multiplying both sides withD ,(r,s), integrating overs and
applying Eqg.(12), one finally reaches to E¢34).
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